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ABSTRACT 
The works of both Sprind~uk (1979-80) and Weissauer (1980) consider the 
relation between Hilbert subsets of Q and sets consisting of powers of primes. A 
comparison of their results leads to generalizations and new proofs devoid of 
either p-adic diophantine approximation or of nonstandard arithmetic (§3 and 
§4). Results of Weissauer, giving new Hilbertian infinite extensions of every 
Hilbertian field, receive short direct standard proofs, and a negative answer is 
given to a question of Roquette on the relation between Hilbert sets and value 
sets. 

Introduction 

Let R be an integral domain with quotient  field K. For fj . . . . .  )~ E K[X, Y] let 

HR (f, . . . . .  f~) = HR (f)  

= {x(0) E R I fi (x(0), Y) is irreducible in K[  Y], i = 1 . . . . .  l} 

be the Hilbert set of f in R. Similarly, let 

V~(f) = {x(0) E R I~ (x(0), Y) has no zero in K, i = 1 , . . . ,  I}. 

Consider such sets only if f~ is irreducible and of degree at least 2 in ¥, 

i = 1 . . . . .  I. The field K is Hilbertian if HK (f)  is infinite for each such f. For 

simplicity we take K to be a countable field of characteristic zero, with a fixed 

algebraic closure /£. 

Recent  investigations have concentrated on two topics. First, for a given 

Hilbert ian field K, infinite subextensions of ffi/K are given that  are Hilbertian. 
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Weissauer's thesis [22] contains a nonstandard proof of the following result. 

Suppose that K C M C M~ C/~, that M~ is not in the Galois hull of M/K, and that 

M1/M is finite. Then M1 is Hilbertian. Our proof of this (Corollary 1.4) follows 

from two Galois theoretic lemmas. As an immediate corollary, the solvable 
closure of a Hilbertian field (which happens to be a non-Hilbertian field) has all 

of its proper finite extensions Hilbertian. 

Second, for a given Hilbertian field K, some of the subsets H of K, that are 

contained in "many" Hilbert sets, are described. Call H a universal Hilbert 
subset (§3) if H is infinite and, up to finite sets, contained in every Hilbert subset 

of K. Gilmore and Robinson [9] nonconstructively demonstrate that universal 

Hilbert subsets exist. But, even if K = Q, their explicit production is no simple 

matter. 

Sprind~uk [18] considers the set H* -- {p' ]p is prime, t E N}. He states two 

conditions that guarantee for f EQ[X, Y] that H*-HQ(f )  is an explicitly 

computable finite set. His intricate proof is based on p-adic diophantine 

approximation. Theorem 3.2 observes that the qualitative part of his result 

follows quickly from Siegel's celebrated theorem [17]. This starts the main story 

of the p a p e r -  the remarkable connection between [18] and [22]. 

Zerofinite sets (§4) are a standard version of the nonstandard polefinite 
elements of [22]. The proof of Theorem 3.2 consists primarily of noting that H* 

is a zerofinite subset of Q with zero bound 1. Let H be a zerofinite subset of K. 
Theorem 4.2 gives a direct standard proof that every Hilbert set of K has infinite 

intersection with some transform of H by a Mobius transformation of K, a 
nonstandard deduction of [22]. Our standard proof of Weissauer's result, that 

fields with a product formula are Hilbertian, uses the distributions that go back 
to Weil's thesis [21]. Although much of the short proof of Proposition 4.5 
consists of a reminder about these objects, at this point the indirect nonstandard 

proof is quite slick, and difficult to compare with ours. We concentrate on the 

reproof of both the qualitative and quantitative results of [18] without either 

nonstandard arithmetic or diophantine approximation. The approach is distinct 

from that of [11] which also removes the nonstandard arithmetic from this result, 

but remains true to the original ideas. Finally (Theorem 4.9) we outline how 

Sprind~uk [20] goes from this point to demonstrate that {[exp(~/log(log(m))] + 

m !2", m = 1,2, . . .  } = H is a universal Hilbert subset of Q. 

A subtheme of the paper considers connections between the sets Vk(f) and 
HK(f). A question of Roquette (§2) has a negative answer: There are Hilbert 

sets Ho(f) (defined by one polynomial) that do not contain sets of form V~(h) 
(also defined by one polynomial). A positive answer would have simplified 
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properties of zerofinite sets (§3). This leads to a series of observations on the role 

of the special value sets Vk(h~(Y)-  X .  h2(Y)) in testing K for Hilbertianity. 

Proposition 3.4, in particular, applies the Mordell conjecture [5] to show that 

there are infinite sets H for which H - V6 (hr (Y ) -  X • hz(Y)) is finite for each 

pair h~, h2 E Q [ Y ]  with h~ • h2 of positive degree, but H is not a universal Hilbert 

subset. 

Finally, here is a version of a problem in [13; p. 142] that we have not 

considered in this paper. Is there a unique factorization domain R with infinitely 

many principal prime ideals (~(1)),(~'(2)),... for which H*={rc(i) ' , i  = 
1,2 . . . .  ; t E N} is not a zerofinite set? 

Comments by Moshe Jarden account for much of the improvement between 

the original and final version of this manuscript. The proof of Theorem 4.9 

evolved from correspondence between the author and V. G. Sprind~uk. 

§1. A standard proof of a result of Weissauer 

First we rephrase Hilbert 's observations [10] relating his irreducibility 

theorem to questions about realizing groups as Galois groups. For simplicity 

assume throughout this paper that the Hilbertian field K is of characteristic 0. 

For hi . . . . .  ht E K [ X ,  Y], denote by Vk(h)= Vk(h~ . . . . .  h~) the set 

{xo E K I hi(xo, Y) has no zero, i = 1 . . . . .  l}. Then, each Hilbert set of K contains 

a Hilbert set of form V~(h) with h~ . . . .  , h~ absolutely irreducible polynomials of 

degree at least 2 in Y. The examples of §2 show that we cannot assume that 1 = 1. 

Finally, denote by G(f(Y) ,  K) the Galois group of the splitting field of f ( Y )  over 

the field K. Then, for f E K[X, Y], {a E K I G(f(a, Y), K) = G(f(X, Y), K(X))} 

contains a Hilbert set of K. 

Our next results produce many infinite extensions of K that are Hilbertian. 

Let K C L C 1) with I)/K a Galois extension. The next lemma is an immediate 

consequence of the fundamental theorem of Galois theory. 

LEMMA 1.1. For x E f~, here is the exact condition that L (x)C L • M~ with 
M~/K Galois and L N Mt = K. For some normal subgroup H of G(~I/K), 
G(fU L (x )) D G(II/ L ) f'l H where H and G(I-I/ L ) generate G (O/ K). 

Let L / K  be a finite separable extension of K and let h~,..., hm E L [T, X] be 

absolutely irreducible polynomials with deg×(h~)> 1, i = 1 . . . . .  m. Let a be a 

primitive generator for L / K  and replace h, by Hi --- 

h~(T1 + a • T2, X)  E L IT,, T2, X]. Note that H~ is also absolutely irreducible, 

i = 1 . . . . .  m. List the distinct conjugates a = a ~) . . . .  , a C") of a and denote the 
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j th  conjugate of h~(T~+a. T2, X)  by HI j). Let £ = K ( a  °) . . . .  , a  (")) and let 
gi = 1-17=~ H~ 1, an irreducible element of K[TI, 7"2, X]. Consider, also, the split- 

ting field, O(g~, T), of g~ over K(T~, T2)= K(T).  It contains /~(T). Also, let 

O(H~ j), T) be the splitting field of H~ ) over L(T) .  Denote  by ~(g, T) the 

composition of U/(g~, T) . . . .  , l~(g,,, T), and by L(g )  the algebraic closure of K in 

l)(g, T). 

LEMMA 1.2. For each fixed i, there exists no field M")CI)(g ,T)  with 
M(°/K(T) Galois, L ( T ) N  M (°= K(T)  and L(T) .  M(°D L(T, x (°) where x (° is 
some zero of Hi. 

PROOF. Suppose the conclusion is incorrect. With no loss, change K to 

K'  -- £ ( g )  ~ M °). Thus, the hypotheses imply that x t° is contained in the Galois 

extension/~(T) • M")/K(T). Therefore /~(T)  • M (° contains all conjugates of x ") 

over K(T). It is therefore l)(gi, T). Identify its group with 

(1.1) G(f_./K) x G(M")/K(T))= G(f_.(T)/K(T)) × G(O(gi, T)/I~(T)). 

G(f~(gi, T)/L(T)) with a subgroup of the product of isomorphic Identify 

groups 

(1.2) ( I  G(a(H~ k), T)/£(T)). 
k ~ l  

In (1.2), G ( £ / K )  acts on the product by permuting the factors transitively. Also, 

from (1.1), it commutes with the image of G(O(gi, T)/I~(T)). Thus for each k ~  1, 

we may assume with no loss that £(T,  x (i)) = £(T,  x~ )) with x~ ) some zero of 

H~ k). Now apply the algebraic independence of T~ + a .  T2 and T1 + a ~" T2. 
Thus L~ = f~(Tl + a . T2, x (°) and L2= f~(T~ + a~). T2, x~ )) are regular and 

linearly disjoint extensions of /~. In particular, [L2:f~(Tl+atk).T2)] = 
[L~" L2 : £ (T, x(°)] > 1, contrary to the above. This concludes the lemma. • 

THEOREM 1.3. Let M be a Galois extension of an Hilbertian field K. For L, a 
finite proper extension of K such that M f3 L = K, let N = L • M. Then N is an 
Hilbertian field. Moreover, every Hilbert set of N contains elements of L. 

PROOF. Return to the notation prior to the lemma. From standard reductions 

we have only to show that there exist t~, h E K such that hi (fi + o~ • h, X)  has no 

zero in L • M, i = 1 . . . . .  m. Choose h, t2 such that the composite of the splitting 
fields of g i ( f i + a ' t 2 , X ) ,  i = 1  . . . . .  m has Galois group isomorphic to 

G(l~(g, T)/K(T)). Now apply the Galois theoretic criteria of Lemma 1.1 to the 

conclusion of Lemma 1.2 to deduce that no zero of h~(t~ + a • t2, X)  is in a field of 
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the form L • M~ with L (q Mj = K and M~/K Galois, i = 1 . . . .  , m. In particular 

this applies to M~ any subfield of M. • 

COROLLARY 1.4 [22]. Let M be an algebraic extension of an Hilbertian field K, 
and let M, be a proper finite extension of M. If M~ is not contained in the Galois 
hull, ~t, of M/K, then M~ is Hilbertian. 

PROOF. With no loss replace M by M, f) AT/. With M1 = M(a),  put LI = K(a)  

and K~ = L, N AT/. Exchange K~ for K, L~ for L and /V/ for  M in Theorem 1.3. 

Therefore M~ = AT/. Lz( = A~/. M~) is Hilbertian, and each Hilbertian set con- 

tains elements of L~ and therefore M~. Thus M~ is Hilbertian. • 

Notice that the maximal solvable extension Qso~ of Q is not Hilbertian; there 

exists no a E Q,,,, such that y2 _ a is irreducible in Qso,. But Corollary 1.4 implies 

that every proper finite extension of Qs,,~ is Hilbertian. 

§2. Testing Hilbertianity - -  one value set does not suffice 

For h E K[X, Y], an absolutely irreducible polynomial, call the set VK(h)= 
{xoE K [ h(xo, Y) has a zero} the value set of h (with respect to X). Denote by 

Vk(h) the complement of this set - -  as in §1. We observed, in the opening 

paragraph of §1, that every Hilbert set contains an intersection of a finite number 

of complements of value sets. P. Roquette has asked this: 

QUESTION 2.1. Does each Hilbert set of K contain a set of the form Vk(h ) - U 
where U is a finite set and h is an irreducible polynomial of degree at least 2 in Y? 

We now give examples to show that the question has a negative answer even in 

the case that K = Q. There is additional motivation and elaboration in §3. 

Consider f E Q[X, Y] and h,, h2 E Q[Z] with these properties: 

(2.1) (a) f is absolutely irreducible; 

(b) f(hl(Z),  Y) and f(h2(Z), Y)  are both reducible; and 

(c) there exists no rational functions g, gl and g2 E Q(Z)  with deg(g) > 1, 
h~(Z) = g(g~(Z)) and h2(Z) = g(g2(Z)). 

LEMMA 2.2. If  (2.1) holds, then HQ(f) contains no set of form V 6 ( h ) -  U 
where U is finite and h is an irreducible polynomial of degree at least 2 in Y. 

PROOF. Suppose the 

properties contrary to 

VQ(h) D VQ(h2(Y)- X), 

consider /~(Z, Y) = h(h~ 

lemma is false and there is an h E Q[X, Y] with 

the conclusion. Then VQ(h)D Vo(ht( Y ) -  X)  and 

excluding in either containment some finite set. Now 

(Z), Y), i = 1, 2. For each Zo E Q, there exists yC0°~ Q 
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such that /~(zo, y~]))=0, i = 1,2. An application of Hilbert 's irreducibility 

theorem(!) shows that/~i(Z, Y) has a factor Y -  mi(Z) of degree 1 in Y and at 

least degree 1 in Z, i = 1,2. We rewrite this in terms of field theory. 

Let x be an indeterminate, y a zero of h(x, Y), and z ") a zero of y - mi(Z). 
Then hi(z ¢°, y) = 0. With no loss we may assume that x = hl(zm). And, from the 

equation h(x, y) -- h(h:(z¢:)), y) = 0 (and the irreducibility of h(X, y) over Q(y)) 
there exists a Q(y)-isomorphism o- such that o-(h2(z¢2)))= h:(o-(z¢2)))= x. Re- 
place z ¢2) by o-(z ¢2)) to conclude that we have a chain of fields Q(z ¢°) D Q(x, y) D 

Q(x), i = 1,2. Apply Luroth's theorem: Q(x, y) = Q(y')  for some element y'  with 

g(y ')  = x = g(gi (z°)))= hi (z °~) for some g, g~ E Q(Z),  i = 1,2. Since g( Y ) -  X is 

of degree 1 in X, it is irreducible. From Gauss' lemma, g ( Y ) - x  is irreducible 

over Q(x). Thus [Q(y'l:Q(x)]=degy(h)=deg(g). Conclude the lemma by 

noting that this contradicts (2.1)(c). • 

From Lemma 2.2 a negative answer to Question 2.1 requires only that we 

produce f, hi and h2 with the properties of expression (2.1). Take f -  
4 . Y 4 + 4 . Y 2 + 1 - X ,  h I ( Z ) = 4 . Z  4 + 4 . Z  2+1 and h 2 ( Z ) = - Z  4 - Z  2. Cal- 

culate that 

Z4-I-  Z2-]- 4 . y 4 + 4 .  y 2 + l  

(2.2) = ( Z 2 + Z . Z  • Y + 2 .  Y 2 + l ) . ( Z 2 - 2 . Z .  Y + 2 - Y 2 +  1). 

If hi(Z)= g(g~(Z))with deg(g )>  1, i =  1,2, then one of the factors in (2.2) 

would be divisible by g~(Z)-g2(Y). Clearly, this does not happen, and (2.1)(c) 

holds. Expression (2.2) appears in [6; p. 93] as a linear change of variables, so as 
to put its coefficients in Q, of an example from [4]. 

Unfortunately, such examples over Q do not come easily. If, however, we 

allow h2 to be a rational function, instead of a polynomial, and we take 

f = h , ( Y ) - X ,  then [8; Example 7] gives examples in which f is of all possible 
degrees greater than 3 in Y. If we allow K to be a number field there are 

examples of degree 7, 11, 12, 15, 21 and 31 where h. and h2 are indecomposable 
polynomials and f(X, Y)= h ~ ( Y ) - X  [8; especially the discussion after Exam- 

ple 7]. As a consequence of the classification of finite simple groups, these are 

known to be the only possible degrees under these conditions. Lemma 3.I (§3) 

shows why it makes sense to seek examples where f is of the form h ~ ( Y ) -  X. 

§3. Sprind~uk's theorem and universal Hilbert subsets 

Let K be a countable Hilbertian field, and let fl(X, Y), f2(X, Y) . . . .  be an 

ordering of the irreducible elements of K[X, Y]. For each integer i choose 
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x ( i )E  K for which f~(x (i), Y ) , . . . ,  [~ (x (i), Y)  are irreducible in K[ Y]. Then the 

infinite set H = {x(1),x(2), . . .} has the universal Hilbert subset property: 

H - Hn(g~ . . . .  , gt) is finite for each collection 

(3.1) {g~,. • . ,  gt} of irreducible polynomials in K IX, Y]. 

This is a paraphrase of an observation from [9]. But, even in the case that K = Q, 

how do we explicitly produce an infinite universal Hilbert subset? Note that 

finite unions of sets with propery (3.1) also have property (3.1). 

Sprind~uk [18; Theorem 1] uses p-adic approximation to produce explicit 

infinite sets H with this property: H - H o ( f )  is finite for each absolutely 

irreducible polynomial f(X, Y ) E  Q[X, Y] where 

(3.2) (a) f(0, Y) has a Q-zero, y(0); and 

(b) 1,0,,,,,, / 0. 

For example H* = {p']p is prime, t E N} is such a set. It is unlikely that the 

essence of condition (3.2)(a) can be dropped. Indeed, if g(Y)  is any polynomial 

of degree greater than 1 that assumes infinitely many positive prime values over 

Z, then the irreducible polynomial g ( Y ) - X  has the property that H * -  

H o ( g ( Y ) -  X)  is infinite. Apparently it is unknown if there is such a polynomial 

g(Y)  [14], but each irreducible polynomial in Z[Y], whose values on Z form a 

set with greatest common divisor 1, seems to be a reasonable candidate [2]. 

Therefore it is reasonable to ask if there is some simple procedure by which, 

given an irreducible polynomial f E Q[X, Y], we can alter the infinite set H* to a 

set H*(f)  so that H * ( f ) - H o ( f )  is finite. In this way we would be giving an 
"explicit proof" of Hilbert's irreducibility theorem. Recall (§2) that since HQ(/) 

contains V~(hl . . . . .  ht) = V/~(h), with hi . . . .  , ht absolutely irreducible elements 

of z[x, YI that are monic in Y, we need only find an alteration of H* to H*(h) 
which is, up to a finite set, contained in V[~(h). Note first that for the case l = 1 

this is relatively easy. 

For h an absolutely irreducible polynomial of Q[X, Y], either the equation 

h (X, Y) = 0 has an infinite number of Z-valued points (x 0) ,  Y (0)) with 

0 
OY (h )},,~0).y,0))¢ 0, 

or it does not. In the former case choose one of these, (x (0), y (0)), and let 

H*(h) = {p' - x(0) lp is prime, t E N}, and in the latter case let H*(h) = H*. Of 

course, testing which of these holds requires a result such as [17]. Since [17] tells 
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us that a nonsingular projective model of the curve h(X, Y) = 0 is of genus zero, 

it is then theoretically possible to explicitly change coordinates for the curve to 

find a conic in p2 birational to it. Legendre's method (e.g., [1; p. 73]) then 

produces (x(0), y(0)). 

Unfortunately, according to §2, the case l = 1 is not suitably general. In §4 we 

compare Sprind~uk's result with the process by which Weissauer [22] shows that 

any field K, with a product formula, is Hilbertian. 

Next we show that the qualitative part of Sprind~uk's theorem is an easy 

consequence of Siegel's theorem [17]. The use of the Thue-Siegel-Roth theorem 

in [17], unlike Sprind~uk's method, excludes effective computation of the finite 

set H * - H o ( f ) .  Let f E Q[X, Y] be an irreducible polynomial, and with x an 

indeterminate, let f~t be the splitting field of f ( Y ) - x  over Q(x). 

LEMMA 

(3.3) (a) 

(b) 

3.1. There exists g, . . . . .  g~ E Q( YI with these properties: 

Hz(f)U U, = V ~ ( g t ( Y ) - x ) n . . .  n V~ . (g , (Y ) -X )U  U2 where U, 

and U2 are finite sets; 
for each i either g~(Y)EQ[Y],  or g~(Y)= h,(Y)/(m,(Y)) "~° with hi, 
m~ EQ[Y] ,  m, an irreducible quadric and deg(h,)= 2. n(i). 

fl~ D fl~, ; and 
f(g~(Z), Y)  is reducible (over Q(Z)), i = 1 . . . .  , I. 

(c) 
(d) 

OUTLINE OF PROOF [7, Theorem 1]. List the minimal subfields L , , . . . ,  Lt of f~r 

with the following properties: L D Q(x); L, is of genus 0 and has a Q-rational 

place; G(~r/L,)  is intransitive in its action on the zeros of f(x, Y); and the place 

x = ~ is either totally ramified in L, or there are two conjugate places of L~ over 

x = ~, each M~-rational with [M, : Q] = 2 and M~ _C R, i = 1 . . . . .  1. 

Under these conditions L~ =Q(z~) and there exists g~ E Q(Z) such that 

g(z~) =x ,  i = 1 , . . . , I .  The conditions on the places of Li over x = ~  give 

condition (b) and condition (d) follows, by Galois theory, from the intransitivity 

of G(flt/L~ ) on the zeros of f(x, Y), i = 1 . . . . .  I. Thus we have only to establish 

condition (a). But this is exactly the Galois theoretic interpretation of [17; p. 51] 

whose set up consumes most of the proof of [7; Theorem 1]. • 

THEOREM 3.2. For H* = {p' I P is prime, t E S}, H* - Ho(f) is.finite for each f 

satisfying condition (3.2). 

PROOF. Suppose that f satisfies (3.2). Let gl . . . . .  g~ be the rational functions 

that arise from Lemma 3.1. For any one of these, say g, we need only show that 

H * -  V ~ ( g ( Y ) -  X)  is finite. Now we show that, in either circumstance of 
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expression (3.3)(b), the numerator  of g(Y)  - -  call it h ( Y )  - -  has a proper 

irreducible factor that appears with multiplicity one. 

Let x be an indeterminate, and let y = y ( 0 ) + E T = l a i ' x  i be the Puiseux 

expansion for the zero of f(x, Y) with center y(0). The coefficients m, a2 . . . . .  are 

in Q and the expansion requires no fractional exponents precisely because of 

(3.2)(b). Denote  the zeros of g ( Y ) - x  by z(1) . . . . .  z(n). The series may have 

fractional exponents in x. Their constant terms are the zeros of h(Z).  Let y be a 

zero of f(x, Y) and let z(1) . . . . .  z (k )  denote an orbit of the action of 

G(llr/Q(y)) on {z(1) , . . . , z (n)} .  From condition (3.3)(d), k < n .  Thus the 

elementary symmetric functions in z (1) , . . . ,  z (k) are in Q(y). So the elementary 

symmetric functions in z(1) . . . .  , z ( k )  have Puiseux expansions without frac- 

tional exponents in x, and the elementary symmetric functions in the constant 

terms of z(1) . . . . .  z (k )  are in Q. The stated property of h(Y) ,  in the paragraph 

above, follows immediately. 

There are now two cases corresponding to (3.3)(b): Either 

(3.4) (a) g(Z)  = h°)(Z) • h(2)(Z) with h ~'), h (2) E Q[Z] relatively prime polyno- 

mials of positive degree; or 

(b) g ( Z ) =  h°~(Z) • h~2)(Z)/(m(Z)) "~2 with h °), h ~2), m E Q[Z]  relatively 

prime in pairs and of positive degree, and m irreducible of degree 2. 

First consider (3.4)(a). Let c(i)/d(i), i=  1 ,2 , . . .  be a sequence of distinct 

rational numbers with (c(i), d(i)) = 1, c(i), d(i) E Z and g(c(i)/d(i)) = p (i) '~), 
a prime integer power. The d(i) can be bounded independently of i, and 

h°)(c(i)/d(i)) (resp., h~2)(c(i)/d(i))) can be written as e°) .p( i )  "(~) (resp., 

e (2). p(i) S~°) with e °) and e ~2) running over a finite list of rational numbers and 

r(i) + s( i )= t(i) with r(i), s(i)>= O. Note that neither r(i) nor s(i) is a bounded 

function of i. 

From the euclidean algorithm, however, mC~)(Z) • h~U(Z)+ m(~)(Z) • hC2)(Z)= 
1 with m '~), m(2)EQ[Z].  Conclude that the numerator  of the left side of this 

expression evaluated at c(i)/d(i)  is divisible by arbitrarily high powers of primes 

as a function of i. This contradiction concludes the possibility of (3.4)(a). Albeit, 

a bit more complicated, a contradiction arises from (3.4)(b) similarly once it is 

noted that, instead of bounding d(i), we may write m(c(i) /d(i))  as e .(d(i)) 
where e runs over a finite list of rational numbers. The details are part of [17], 

and thus we conclude the proof. • 

REMARK 3.3. Note that condition (3.4) is considerably weaker than the 

conclusion we drew from condition (3.2), which is that h~)(Z) could be taken to 



356 M. FRIED Isr. J. Math. 

be irreducible over Q. That this weaker condition suffices for the conclusion of 

the proof will be part of the argument at the end of §4 by which we construct 

universal Hilbert subsets explicitly. 

Let H = {x(1), x(2) . . . .  } be an infinite subset of Q. It is tempting, from Lemma 

3.1, to test if H is a universal Hilbert subset (property (3.1)) by considering only 

whether H -  V ~ ( g ( Y ) - X )  is finite for each g E Q ( Y )  of degree at least 2. As 

our next result shows, this test fails as a consequence of the recent proof of the 

Mordell conjecture [5]. For the next proposition only, switch the X and Y 

coordinates in the usual definition of an affine Weierstrass equation : f(X,  Y)  = 0 
has the form X 2 -  m ( Y ) = O  with deg (m)=  3. 

PROPOSITION 3.4. Let f(X, Y)  = 0 be an affine Weierstrass model for an elliptic 
curve over Q having infinitely many Q-rational points. Let H = {x (1), x (2) . . . .  } be 
the X-coordinates of the Q-rational points on this equation. Then H -  
V6(g( Y) - X)  is finite for each g E Q(Y) of degree at least 2. Clearly, however, 
since V6(f) f) H is empty, H is not a universal Hilbert subset. 

PROOF. Suppose, on the contrary, that H 71 V o ( g ( Y ) -  X)  is infinite. Let x 

be an indeterminate, y a zero of f(x, Y)  and z a zero of g ( Z ) -  x. The function 

field Q(y ,z)  contains Q(y,x),  and so it is of genus at least one. Since 

Q(x, z) = Q(z) is of genus zero, conclude that, no matter what choice we took for 

z, Q(y,z)  is a degree 3 extension of Q(z). For each x ' E H A  V o ( g ( Y ) - X )  
there is a Q-rational specialization (x,y)---~(x',y') and (x, z)---~(x', z'). Since 

[Q(y, x) : Q(x)] = 3 = [Q(y, z);Q(z)] ,Q(y,  x) is linearly disjoint from Q(z) over 

Q(x). Thus (x, y )--~ (x ', y ') extends to (x ,y ,z)--~(x ' ,y ' ,z ' )  to give infinitely 

many Q-rational places for the function field Q(y, z). This, however, is contrary 

to the Mordell conjecture if the genus of Q(y, z) exceeds 1. And this, it surely 

does, if Q(y, z) is a ramified extension of Q(y, x). The remainder of the proof 

consists of demonstrating this ramification property. 

For some value z(0), the Q-rational place of Q(z) corresponding to the 

specialization z ~ z(0) is ramified over a finite place of Q(x) corresponding to 

the specialization x ~ x(0). But, there is at least one Q-rational place p(0) of 

Q(x, y), lying over the place x ~ x(0), that is unramified over Q(x). Thus, the 

place of Q(y, z) extending both p(0) and z ~ z (0) is ramified over Q(y, x). • 

§4. Comparison of the Weissauer and Sprind~uk results 

Weissauer [22] shows that any field K with a product formula is Hilbertian. 

For simplicity of discussion we assume that K is a countable field (of characteris- 



Vol. 51, 1985 SPRINDZ, UK-WEISSAUER APPROACH 357 

tic 0 - -  as before). A place of a function field over K is a valuation 

corresponding to a K-conjugacy class of primes of the field. 

Denote by *K a nontrivial ultraproduct of a countable product of copies of K. 

The essential point of [9] is that a universal Hilbert subset H (expression (3.1)) 

gives a representative (x(1),x(2) . . . .  ) of an element x ( H ) E * K  with this 

property: 

(4.1) K(x (H))is algebraically closed in *K. 

Indeed, the existence of x' E *K for which K(x ')  is algebraically closed in *K is 

equivalent to Hilbertianity for K. 

Weissauer starts with a generalization of the Gilmore-Robinson observation. 

Here is an analogue of his polefinite definition to match the discussion in §3. 

DEFINITION 4.1. Call a set H ={x(1) ,x(2) , . . .}  of K zerofinite if there is an 

integer m (a zero bound) such that for each irreducible f E K[X, Y], H - V~(f) 
infinite implies that the curve f(X, Y ) =  0 has at most m places lying over the 

place X = 0 in the X-line. For a E M6b(K), M6bius (i.e., linear fractional) 

transformations with coefficients in K, denote by H ( a )  the transformed set 

{a (x (1)), a (x (2)) . . . .  }. For simplicity just discard ~ if it occurs in this set. 

In analogy with the discussion following expression (3.2), the next result 

demonstrates explicitly the Hilbertianity of K from the existence of a zerofinite 

set. This standard proof does, however, use the existence of a nontrivial maximal 
ultrafilter on N. 

THEOREM 4.2. Let H be a zerofinite subset of K. Then, for each Hilbert set 
HK(S), there exists a @M6b(K) with H(a)N HK(S) infinite. 

PROOF. As stated at the opening of §1, it suffices to show, for h~ . . . .  , h, E 

K[X, Y], absolutely irreducible and of degree at least 2 in Y, that there is an 

a E M6b(K) with H ( a ) M  Vk(h~ . . . . .  ht) infinite. For each a E K and h E 
K[X, Y] denote by 'h ~ the polynomial X deg'~h~, h(a + (l /X),  Y), and by H(a) 
the set {a + (1/x(1)), a + (1/x(2)) . . . .  }. Clearly H(a) M Vk(hl . . . . .  h,) is infinite if 

and only if H M Vk(h~"~,..., h~) ,  is infinite. Let oR be a nontrivial maximal 

ultrafilter on N and for U E oR denote by H(U) the set {x(i)Ii E U}. The proof 

proceeds by contradiction: Assume that H M Vk(hl ~ . . . .  , h~ a~) is finite for each 

a ~ K .  
• . ~ l l t l l ~ ( a )  "l Thus, foreachaEK,  thereexistsi(a)E{1,2,, l } f o r w h i c h H - - ~ , , ~ ) j i s  

infinite and equal to H(U,) for some U~ E oR. Let m be the integer of Definition 

4.1. The remainder of the proof consists of finding - -  explicitly, if K is given 
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explicitly - -  an integer m'  and m' values of a, a(1) . . . . .  a (m') ,  for which it is 

impossible that 

H (q ~z it..,o)) ~ A ' "  (q ~z t~,~"~m', "~ = H(U, . ,  fq " • A U~{.,,)) v K ~k t't" i ( a ( 1  ) ) )  v K ~tt, i ( a (m ' ) ) )  

is infinite. This contradiction concludes the theorem. 

Indeed, let x be an indeterminate and let y t ,  denote a zero of ,,z'ca~'~t,,,v ~,~ y) .  

Choose a ( j )  inductively so that the discriminant locus of the field extension 

K(x, yq))/K(x) is disjoint, excluding possibly 0, from the discriminant locus of 

the field extension K(x, yO) . . . ,  y~J 1))/K(x)" Since putting an " a "  superscript on 

h (X, Y) shifts the corresponding discriminant locus of X d°g'~h), h (l /X, Y) by a, 

this is clearly possible. If c h a r ( K ) =  0 each extension of K(x)  is ramified over 

some value of x ~ 0 .  See Remark 4.3 for the adjustment in the case that 

char(K) ~ 0. From the discriminant assumption, K(x, y(J)) intersects the Galois 

closure of K(x, y") . . . . .  y°- ' ) /K(x)  in K(x). Thus an induction shows that the 

field L ~n= K(x, y~, . . . . .  yU)) has degree deg~,(h,l)).-,  degy (h , , )  over K(x). 
Also, let p~ be a prime over x = oo of the splitting field of h~(x, Y)  over K(x) ,  

i = 1 . . . . .  I. The residue class field of any prime of K(x, y~k)) over x = 0  is 

contained in one of the residue class fields of p~, . . . ,pt ,  for any k = 1 ,2 , . . . .  

Thus, independent of j, the residue class fields of primes of L ~n over x = 0 have 

degree bounded by ti = n (1 ) . - ,  n(l) ,  with n(i) the degree of the residue class 

field of p~, i = 1 . . . . .  I. 

Therefore,  [Ltm'): K(x)]  is at least 2"'. As each prime of L ("') over x = 0 has 

degree bounded by ti, L " ' )  has more than m places over x = 0 if 2"'/~i exceeds 

m. In addition, L tin') has a K-rational place over every place x = x '  with 

x' E H(Uao) tq. •. fq U~,,,)). It is now standard to find a primitive generator y for 

Ltm')/K(x) for which the irreducible polynomial f (X,  Y ) E K [ X ,  Y] satisfies 

f(x, y) = 0 and the infiniteness of H - Vk(f) contradicts Definition 4.1. • 

REMARK 4.3. If K is infinite and char (K) ~ 0, there are many extensions of 

K(x)  that are ramified only over the place x = 0. Thus, in order to use the 

argument of the last two paragraphs of the proof of Theorem 4.2 in this case, we 

must assume that the function field for h~(X, Y) -- 0 is unramified over the place 

x = ~, i = 1 , . . . ,1 .  Change X to a(X)  for some a E M 6 b ( K )  to achieve this. 

Let S be a nonempty set of primes (i.e., rank 1 valuations) of field K. We say 

that S satisfies a product formula if for each p E S we may choose an additive 

absolute value v(p) corresponding to p with this property. For each 0 ~ a E K 

(4.2) {p E S I v(p)(a) ~ O} if finite, and ~ v(p)(a) = O. 
p E S  
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Weissauer proves that a field K is Hilbertian if it has a set of primes with a 

product formula. We interpret his result to say this: 

PROPOSITION 4.4. Assume that S, a set of primes on a field K, satisfies a 
product formula. Let m be an integer and H = {x(1), x(2) . . . .  } a subset of K with 

this property : For each i, I{P ~ S I v(p)(x (i)) > 0} I <= m. Then H is zerofinite, and 

m is a suitable zero bound. Thus Theorem 4.2 implies that K is Hilbertian. 

First compare Proposition 4.4, in the case K = Q, H = H* = {p' I P is prime, 

t E N} and m = 1 with Theorem 3.2. Here is the conclusion of Proposition 4.4. 

For f E Q[X, Y], absolutely irreducible of degree at least 2 in Y, and y a zero of 

f(x, Y), if Q(x, y) has at least two distinct places over the place x =0 ,  then 

H * -  V6(f) is finite. The proof of Theorem 3.2 demonstrates this for those 

simple polynomials jr arising from expression (3.4). Our next result shows this for 

general f (X ,  Y). Write f(X, Y ) =  h ( Y ) + X ' . m ( X ,  Y),  where h EQ[Y]  and 

m(X,  Y )  are relatively prime polynomials and X X re(X, Y).  Now write 

h ( Y ) /m  (0, Y )  as fl~'=~ ~ (Y)e~')/II~_l hj ( y)fu~ with/i,  hj E Q[ Y] polynomials that 

are relatively prime in pairs. Notice that u _-> 2 expresses that Q(x, y) has at least 

two places over x = 0. 

Proposition 4.5 therefore includes a reproof of Theorem 3.2. Since it is 

effective, however, it does give Sprind:~uk's result - -  both quantitatively and 

qualitatively - -  including also the generalizations that appear in [19]. 

PROPOSITION 4.5. Use the notation of the above paragraph. I f  u >_ 2, then 

H* - V6( f )  is .finite, and a bound on this set can be found explicitly. 

PROOF. With no loss assume that jr is monic in Y. This means that if x is an 

indeterminate and y is a zero of f(x, Y), then y is integral over Q[x]. In 

particular, the places of the function field Q(x, y) that are poles of y, or of any 

polynomial in y, are among the places that are poles in x. For g E Q(x, y) use the 
multiplicative notation 

(g) = p(1, g) .  . . p(t, g)/q(1, g) .  . . q(s, g) 

to express the divisor of g as a product of places of Q(x, y). 

Recall the main consequence of Weil's theory of distributions ([21] or [13; p. 

132-3]). To each place p of Q(x, y) we may attach a function, 6(p) = 3(p)(,), 

from Q-rational places of Q(x, y) to Z-ideals with the following properties. If 

3'(p) are two such functions attached to p, then 6(p) /6 ' (p)  takes values in a finite 

set of explicitly computable fractional Q-ideals (see Remark 4.6). The same is 

true for gcd(8(p), 6'(p)), the function whose value at each Q-rational place is the 
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greatest common divisor of the values of 6(p)  and 6'(p) at that place. For 
g E Q(x ,y)  denote by [g] the function from Q-rational places of Q(x, y) to 

fractional ideals of Q that maps the point (xo, yo) (representing a place) to the 

fractional ideal generated by g(xo, yo). The main theorem of this topic [21] is that 

(4.3) [gl" 6(q(1, g)).  • • 6(q(s, g))/6(p(1, g)). . .  3(p(t, g)) 

takes values in a finite set of explicitly computable fractional Q-ideals, as the 

argument runs over Q-rational places of Q(x, y). For A any Q-rational divisor on 
Q(x, y) and 6 any distribution, multiply the distributions of the constituents of A 

to obtain 6(A).  

Suppose that u_->2, but that H*-V6( f )  is infinite. Then the set J =  

{(p', a ) I P '  ~ H* and f(p', a)  = 0} constitutes an infinite set of Q-rational places 
of Q(x, y). Let f(l~ and f(2) be two of the relatively prime irreducible factors of the 

numerator of h (Y)/m (0, Y), as above. Then (f(i))= p(i)/A (i) where p (i) is an 

irreducible Q-rational divisor and A (i) is a Q-rational divisor whose support is 

contained in the support of the divisor of poles of x, and p(1) and p(2) are 

contained in the support of the divisor of zeros of x. Apply expression (4.3) to x. 

Conclude that the distributions attached to poles of x, and to all but one of the 
zeros of x, must be finite valued on some infinite subset J '  of J. Thus one of fo) or 

f(2), say f~l), has a divisor whose support is among places whose distributions are 

finite valued on J'.  Conclude from an application of (4.3) to fo) that f(7)(x, y) is 
finite valued on J ' .  With this contradiction the proof is complete. • 

REMARK 4.6. The effectiveness part of the proof of Proposition 4.5 requires 

an effective computation of the distribution functions. If p is a place of K(x, y), 
construct 8(p)  as follows: Find g~l~ and g~2)E K(x, y) for which (g~)) and (gt2)) 

have as common support only the divisor p, which appears as a pole of 
multiplicity one in both g~l~ and g~2). Explicit construction of gO) and g~2~ is part of 

[3]. Then, for (x °, y0) a point on f(X, Y)= O, 6(p)(x °, yO) is defined to be the 

common divisor (as an ideal) of the dominators of the fractional ideals generated 

by g°~(a, b) and g~2)(a, b). 

It is possible to imitate the proof of Proposition 4.5 to give an effective version 

of Proposition 4.4. Also, one of the founding papers of nonstandard arithmetic 

[15] seems clearly motivated by [21]. Certainly, however, an application of 

Weissauer's nonstandard method is quicker and slicker; especially since it is only 
for special fields with a product formula that one may expect an explicitness 
result. The reader should now be convinced that Proposition 4.4 is a substantial 

generalization of Sprind~uk's result. 
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We want, however, to conclude this paper with a discussion of the explicit 

construction of universal Hilbert subsets like those that appear in [20]. This 

analysis contains a p-adic analysis subtlety that is, perhaps, a bit deeper than the 

ideas of the proofs of Theorems 3.2 and 4.2 and Proposition 4.5. 
We need the following result from [20]. We adopt the usual notations for 

heights of polynomials over Q. Ordinary absolute value of a E Q is denoted I a I, 

and 

Ht (a )  = ( I ~  max(1,p °rG~)) " max(l, I a I). 

Finally, Ht(f)  is the maximum of the Ht (a )  as a runs over the nonzero 

coefficients of f. 

LEMMA 4.7. Let f (X,  Y ) U Q [ X ,  Y] be irreducible. Suppose that d e g y ( f ) =  

n >= 2 and that f(O, Y )  has a simple root and is reducible. Then there exists an 

explicit constant c(deg(f)) = c such that f(a, Y )  has no linear factor for all a for 

which 

(4.4) (a) [a I_-----(Ht(f)+l)c~deg~r)~; and 

(b) there exists a prime p for which p,,%~a) > I a I ~ ~i,2. 

For example, (4.4) holds for all but a finite computable number of the elements of 

the set H* = {p ' I P is prime, t ~ N}. 

COMMENTS. Previous arguments of this paper suffice to give the qualitative 

aspects of this proof. Consider, for example, the discussion after expression (3.4) 

and Remark 3.3. But the production of c(deg(f)) with property (4.4)(a) seems 
more delicate, and it is (4.4)(a) that is crucial to the remainder of our discussion. 

Let A = {a,,}~, 1 be a sequence of integers with the following properties: 

(4.5) (a) for each m, a,, has a prime divisor p with p"%~-m~= l a m I ~ ~m~ where 

l im , ,~  x (m ) = 0; and 

(b) for each prime q there exists an integer too(q) for which q is a divisor 

of a,, for m _~ too(q). 

Let pt < p2 < • • • be the list of primes. Here are two sets that satisfy (4.5). Let 

A~ = {m!. 2"~}~,=1, where we use the prime 2 for each integer m and compute 

x ( m )  from the formula 

2°rd2(m!) +m2 ~ 2(l°g2(rn!)+m2)( 1 x(m)). 



362 M. FRIED Isr. J. Math. 

Clearly ord2(m!)<=ET=~m/2"=m and by Sterling's formula log2(mI)<= 

C .  m logz(m). Conclude that l immo~x(m)= 0. Let A2 = { p ' . p j "  "P,t,)I where 

for each prime p and each t E N, r(p) is the largest integer such that 

p l " ' "  P, < (p'):/~"~}. 
For a sequence A satisfying (4.5), consider g(X, Y ) E  Q[X, Y], monic in Y, 

for which g(0, Y) is irreducible. Then, by a well known consequence of the 

0ebota rev  density theorem there exists a prime q for which g(0, Y)mod(q)  is 

defined and has no linear factor. Since g(am, Y)  - g(O, Y)mod(q)  for m >= too(q), 

(4.6) g(am, Y)  has no linear factor for m sufficiently large. 

For the next lemma assume that mo(q)<-q" for some u > 0  and all q. 

LEMMA 4.8. In the.notation above, assume that g(X, Y)  is irreducible and 
monic in Y, and that g(O, Y)  is irreducible. Then there exists an explicit constant 

c (deg(g)) = c such that g (am, Y)  has no linear factor if I m I > (Ht(g) + 1) c(a°gtg)~. 

PROOF. From [12] the smallest prime q for which g(0, Y)mod(q)  has no 

linear factor can be bounded by an explicit power (independent even of deg(g)) 

of the discriminant of g(0, Y). Simple estimates for a bound on the discriminant 

of g(0, Y) in terms of Ht(g)  give the conclusion of the lemma from (4.6). • 

THEOREM 4.9. The set H = {[exp(V'loglog(m))] + m [2", m = 1,2 . . . .  } is a 
universal Hilbert subset. 

PROOF. Let g E Q[X, Y], with degv(g)_-> 2, be an irreducible polynomial. Let 

bm= [exp(k/loglog(m))] and am - -mI2  m, m = 1,2 . . . . .  It suffices to show that 

g(br, + am, Y)  has no linear factor for m sufficiently large. 

For m sufficiently large, g(b,,, Y) = f(0, Y; bin) has a simple zero (i.e., X = 0 is 

not a branch point of f (X,  Y;bm)). This explains why we need bm to be 

nonconstant as a function of m. 
Also, from the "slow" growth of bm compared to am, it is a simple computation 

to show that I m I_- > (Ht(f(X, Y; b, ,))+ 1) c for any c = c(deg(g)) and m suffi- 
ciently large. There are two cases. If m is sufficiently large and f(0, Y; b,.) is 

reducible, then Lemma 4.7 shows that f(am, Y; b,,) -- g(bm + am, Y)  has no linear 

factor. If, on the other hand, f(0, Y; bin) is irreducible, Lemma 4.8 gives the same 

conclusion. 
Thus the usual reduction of Hilbert 's irreducibility theorem to consider sets 

V6(g) (as at the beginning of §1) allows us to conclude the theorem. 
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